Editorial & Advertiser disclosure

Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

Technology

Posted By Gbaf News

Posted on August 22, 2018

Predict: Greenbyte Energy Cloud’s new feature identifies wind component failures before they occur

Up to 30% of the life-cycle cost of wind farms is due to wind turbine component failures and maintenance. Predict, Greenbyte Energy Cloud’s new innovative feature is now on commercial release and available for new and potential users. Greenbyte is launching an all-informative campaign to showcase to the renewable energy industry how the accessible feature Predict enables wind farm operators and owners to avoid unscheduled downtime and decrease unforeseen expenditures.

Predict uses statistical models, artificial neural networks and machine learning to identify wind turbine component failures before they occur.

The feature alarms users on changes in temperature that indicate need for maintenance. Predict’s advanced statistical models developed by Greenbyte’s Head of Research, Dr. Pramod Bangalore have been optimized for high accuracy and in collaboration with Greenbyte’s Head of Technology, Mikael Baros, been put to vigorous testing to ensure high accuracy.

Predict estimates the expected temperature for critical components, compares that estimated data to the actual measured values, and enables intelligent and early detection of developing failures. The pilot study on Predict detected faults 2 to 9 months in advance, achieved 94% accuracy and showed a 23% reduction of cost, and the software keeps learning and outperforming itself.

Multiple benefits accrue from this heavily researched feature. Early indication for component failure can reduce downtime, maintenance cost and increase component life. It enables operators and managers to act with a plan instead of acting within a crisis, and allows them agency on making informed maintenance decisions.

Developing Predict has been a journey of knowledge for Greenbyte and an evidence of innovation for the industry. Director of Technology, Mikael Baros has been describing the Artificial Intelligence and machine learning part of the journey in a thrilling blog series The Greenbyte recipe for Artificial Intelligence in renewable energy. More specifically in the first article, he narrates the imminence of component failures in the lifetime of a wind turbine:

We expect turbines to operate 24 hours a day, 7 days a week. If we did the same with a car it would only last us 8 months! Hence it is not surprising that these poor turbines fail (too) often. It is estimated that up to 30% of the total life-cycle cost of a wind farm is due to failure and maintenance activities.

The rest of the series continues to unravel how the data crunching process was applied to the first test customer. Stay tuned for the big and final reveal of Greenbyte’s Predict recipe, published on September 4th!

In the meantime, Head of Research at Greenbyte, Dr. Pramod Bangalore is holding a compelling webinar on Predict on August, 29th, where he unveils the science behind the technology. This webinar is a valuable source of knowledge for users of Greenbyte Energy Cloud, industry professionals and data scientists alike. Interesting parties can sign up to attend the webinar here.

Greenbyte is proud to deliver the latest technologies adapted to the needs of the users and the renewable energy industry, and is humbled to enable professionals create a more sustainable world in the most efficient way. We believe that knowledge is a resource to be shared openly we invite you to dig into it!

Recommended for you

  • The Future of Asset Management: Technology-Driven Innovations and Client Expectations

  • How can we ensure privacy in the digitization of healthcare?

  • Quantum Computing: Unleashing Disruptive Potential and Strategic Industry Implications